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Abstract—This paper studies the problem of StyleGAN inver-
sion, which plays an essential role in enabling the pretrained
StyleGAN to be used for real image editing tasks. The goal of
StyleGAN inversion is to find the exact latent code of the given
image in the latent space of StyleGAN. This problem has a high
demand for quality and efficiency. Existing optimization-based
methods can produce high-quality results, but the optimization
often takes a long time. On the contrary, forward-based methods
are usually faster but the quality of their results is inferior. In
this paper, we present a new feed-forward network “E2Style”
for StyleGAN inversion, with significant improvement in terms
of efficiency and effectiveness. In our inversion network, we
introduce: 1) a shallower backbone with multiple efficient heads
across scales; 2) multi-layer identity loss and multi-layer face
parsing loss to the loss function; and 3) multi-stage refinement.
Combining these designs together forms an effective and ef-
ficient method that exploits all benefits of optimization-based
and forward-based methods. Quantitative and qualitative results
show that our E2Style performs better than existing forward-
based methods and comparably to state-of-the-art optimization-
based methods while maintaining the high efficiency as well
as forward-based methods. Moreover, a number of real image
editing applications demonstrate the efficacy of our E2Style. Our
code is available at https://github.com/wty-ustc/e2style

Index Terms—StyleGAN inversion, Effectiveness, Efficiency

I. INTRODUCTION

GAN inversion aims to invert a real image back into
the latent space of a pretrained GAN model, such as

StyleGAN [1], [2], for the image to be faithfully reconstructed
from the inverted code by the generator. It not only provides
an alternative flexible image editing framework but also helps
reveal the mechanism underneath deep generative models. As
an emerging technique to bridge the pretrained GAN model
and real image editing tasks [3], [4], [5], GAN inversion has
a high demand for quality and efficiency.

Recently, numerous GAN inversion methods [4], [5], [6],
[7], [8] have been proposed and shown strong competence in
performing meaningful manipulations of human faces in the
latent space. They can be mainly categorized as optimization-
based [4], [5], [9] and forward-based [10], [6], [7]. The
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optimization-based approach optimizes the latent code directly
for a given single image by back-propagation. It is capable of
producing high-quality inversion but the optimization process
is too time-consuming, thus greatly limiting its real-time appli-
cations. The forward-based method uses an encoder network to
learn the mapping from the image space to the latent space,
where only one feed-forward pass is required in the infer-
ence, providing higher efficiency for real-time applications.
However, it suffers from lower reconstruction quality, and
its network structure is usually large and complex. Besides,
the hybrid approach [11], [12], [13], [8] that incorporates
the optimization on top of the forward network mitigates the
problem of quality, but the time cost is greatly increasing.

In this paper, we focus on StyleGAN inversion and propose
a new feed-forward network “E2Style”, which significantly
improves existing approaches in terms of both Efficiency and
Effectiveness.

For the network structure design, we have two insights.
First, it is critical to explicitly decouple the information of
different layers. In StyleGAN, the latent code of different
layers corresponds to different semantic levels, and the later
part of the latent code corresponds to the lower level feature
information. Existing frameworks such as IDGI [11] usually
only use the final feature compressed by the encoder to regress
the latent code, which forces various semantic information
to couple together in the final feature. Unlike them, our
encoder network considers a hierarchical structure for the
latent code prediction. In this way, feature vectors extracted
from various spatial levels of the encoder can correspond
to different semantic levels of details from the pretrained
StyleGAN generator, achieving semantic correspondence and
reducing the learning difficulty. Meanwhile, we find it is not
that the deeper the encoder, the better the inversion will be.
And a shallower encoder is sufficient for the latent code
prediction.

Second, the regression should be performed with as little
information loss as possible. The pSp [10] downsamples
the features from the encoder through several convolutional
layers until the resolution is 1 × 1, and then regresses the
latent code through the full-connected layer, which causes a
large degree of information loss. Instead, we adopt a shared
efficient prediction head at each level, which only consists
of a global average pooling layer with varied sizes to levels
and a full-connected layer. For features corresponding to the
low-level information we use a larger size, which preserves
more information and therefore brings performance gains.
This efficient prediction head is more lightweight and efficient
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Fig. 1. E2Style can be applied to a large number of real image editing tasks, such as image restoration, image manipulation, image translation, etc.

than the complex and independent heads used in pSp [10]
that consists of a series of convolutional layers. With these
two network architecture improvements, our network becomes
smaller but outperforms IDGI [11] and pSp [10].

Besides the architecture, we introduce two new losses into
the objective function for better effectiveness. One is multi-
layer identity loss, which provides stronger semantic alignment
supervision compared to single-layer identity loss used in
pSp [10] and thus greatly improves the identity consistency
between the reconstructed image and the input real image.
The other is multi-layer face parsing loss, which helps capture
local facial details (e.g., eyes, mouth) for a more fine-grained
reconstruction.

In order to further reduce the quality gap between the single
stage prediction of latent code and the ideal prediction, we
propose a multi-stage refinement learning approach to progres-
sively predict the residual of the latent code through multiple
passes of the encoders to achieve better inversion quality.
Specifically, we introduce a recursive forward refinement
phase in our framework, which learns the residual of the latent
code output from the first phase to find a more optimal solution
that exists around that latent code. E2Style shares the similar
spirit to IDGI’s prediction-before-optimization method [11],
but we improve the initial inverted latent code by introducing
a refinement network. This improves the performance without
a significant increase in time consumption.

Qualitative and quantitative experiments show that E2Style
substantially outperforms existing forward-based methods and
even achieves performance comparable to the state-of-the-art
optimization-based methods. A number of applications includ-
ing secure deep hiding, image manipulation, image restoration,
and image translation evidence the generalization of E2Style
for real-time image editing tasks, illustrated in Figure 1.

To summarize, our contributions are summarized as follows:
• We design an efficient network structure for StyleGAN

inversion, which has fewer network parameters and better
performance than existing forward-based methods.

• To further improve the inversion effectiveness, we utilize
multi-layer identity loss and multi-layer face parsing loss
as well as introduce a recursive forward refinement phase.

• We propose a new application of StyleGAN inversion:
secure deep hiding. And various real image editing ap-
plications demonstrate the power of our approach.

II. RELATED WORK

A. Generative Adversarial Networks (GANs).

Since GANs were first proposed by Goodfellow et al. [14] in
2014, it has evolved considerably in terms of training strategies
[2], [15], loss functions [16], [17], [18], regularizations [19],
[20], [21], and network structures [22], [23]. Today’s popu-
lar GANs have demonstrated amazing capabilities in many
computer vision tasks [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], especially image synthesis [34], [35], [36].
BigGAN [20] can successfully generate high-fidelity, diverse
samples for complex and large-scale datasets like ImageNet
[37] by only feeding the class condition. ProGAN [38] and
StyleGAN [1], [2] can synthesize high-resolution images up
to 1024 × 1024 with a progressive upsample network. To
control the GAN synthesis process, some works explore the
semantic editing of latent codes by finding semantic directions
on their latent space in a supervised [3] or unsupervised
[39], [40] manner. Besides, built upon these pretrained GAN
models, a lot of real image editing tasks can also be conducted
in the latent space, such as super resolution, face attribute
manipulation. To enable these tasks, GAN inversion acts as
the intermediate bridge. Specifically, the target real image will
be firstly inverted into the latent space via such inversion
techniques, then be edited in the latent space. In this paper,
we follow existing methods [41], [10], [4], [5], [7], [11] and
choose StyleGAN as the inversion target, but the proposed
feed-forward GAN inversion network and the accompanying
design principles can be easily adapted to other GAN models.

B. GAN Inversion.

Existing GAN inversion methods can be subdivided into
optimization-based [4], [5], [42], [9], forward-based [10], [6],
[43], [7] and hybrid [11], [12], [13], [8], [44] approaches.

The optimization-based approach directly optimizes the
latent code to minimize the reconstruction loss, so that the
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Fig. 2. Network structure comparison with other methods. IDGI [11] uses a deep backbone network and pSp [10] employs 18 high-overhead ConvHeads to
predict the single layer latent code separately. Compared with them, we design a shallower backbone and a more efficient prediction head. We also introduce
the purely feed-forward-based multi-stage refinement, which improves the performance without bringing a significant increase in time consumption.

synthetic image generated by the inverted latent code is as
similar as possible to the target real image. For example,
Pan et al. [9] optimize the latent code while fine-tuning the
parameters of the generator. Image2StyleGAN++ [5] takes
alternative optimizations of StyleGAN’s latent code and noise
space to further improve the inversion performance. Gu et
al. [42] argue that the mapping of a single image to the
low-dimensional latent code is necessarily lossy and therefore
uses multiple latent codes to reconstruct a single image,
thus alleviating this situation. Although such optimization-
based methods can achieve good reconstruction results, the
optimization process is too time-consuming and requires even
thousands of iterations and ten minutes for some examples,
especially when the initialization point is too far from the ideal
embedding, thus greatly limiting its real-time application.

To speed up, the forward-based methods directly use an
encoder network to learn the mapping from image space to the
latent space. For example, Nitzan et al. [6] use two encoders
to encode identity information and attribute information sep-
arately. Guan et al. [7] propose a novel collaborative learning
framework to train the encoder in an unsupervised manner.
Concurrent with our work, ReStyle [45] extends the encoder-
based inversion method by introducing an iterative refinement
mechanism. This idea is similar to our multi-stage refinement,
but we use a separate encoder at each stage and outperform
ReStyle in terms of all evaluation metrics. The pSp [10]
designs a feature pyramid network with independent inversion
heads for each latent code and introduces the identity loss as an
additional constraint. Different from these methods, we intro-
duce a simple feed-forward network with improved efficiency
and quality. Moreover, the newly proposed multi-layer identity
loss, local parsing loss, and multi-stage refinement should also
generalize to these methods.

Furthermore, the hybrid approach combines forward-based
and optimization-based methods. Zhu et al. [11] use an
encoder to generate an initial latent code, and the following
optimizer uses it as the starting point to further refine the latent
code. Yang et al. [44] follow the prediction-then-optimization

approach of [11] except that a detached dual-channel domain
encoder is proposed. Similarly, DNI [8] uses pSp [10] as
the domain-guided encoder to predict the initial latent code,
and then a noise optimization mechanism is implemented
to capture high-frequency details and further improve the
reconstruction quality. Our multi-stage refinement is inspired
by these methods but improves the inversion quality with
purely feed-forward-based refinements, thus our speed is much
faster than such hybrid approaches.

III. PROPOSED METHOD

In this section, we will first briefly introduce some repre-
sentative feed-forward networks designed for GAN inversion.
Then we will elaborate on the details of our “E2Style” for
better efficiency and effectiveness from three aspects: network
design, improved loss functions, and multi-stage refinement.

A. Network Structure Design

In Figure 2, we show two representative network structures
designed in IDGI [11] and pSp [10] for StyleGAN inversion.
All these methods choose theW+ space [4], [5], [10], [7], [11]
as the target latent space to invert, which is demonstrated to be
more suitable for GAN inversion than the original W space.
It is defined by the cascade of 18 different 512-dimensional
vectors [w1, ..., w18], wi ∈ W .

For the feed-forward network designed in IDGI, it uses
a deep backbone network consisting of a series of residual
blocks to encode the input image into high-level semantic
feature maps (1/64 of the original input resolution) and then
uses an extra fully connected (FC) layer to regress the latent
vectors based on the last encoded features. However, a too
deep network backbone may result in a mismatch between
the feature used for inversion and the semantic level of Style-
GAN.Similarly, pSp also designs a deep backbone network
but leverages the feature pyramid idea [46] to fuse the high-
level feature with the low-level feature, then split each latent
code into different feature pyramid levels. And for each latent
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Fig. 3. The overview of our feed-forward network E2Style for StyleGAN inversion. Data flow is marked by solid lines and losses by dashed ones. Only the
encoder is trainable. Except for the first stage encoder, all other encoders take the original image and the output image of the previous stage as input and
output the residual of the latent code that was predicted in the previous stage.

code wi regression, an independent convolution based head
(ConvHead) is used. Depending on the input feature resolution,
the ConvHead consists of different numbers of convolutional
layers that progressively downsample the features into 1 × 1
resolution, followed by one FC layer. Therefore, there are
a total of 18 ConvHeads in pSp, thus introducing a lot of
overheads. Besides, downsampling the features into 1×1 will
lose much useful information for predicting the latent code,
thus resulting in unsatisfactory reconstruction quality.

For more efficient network design, we ask three questions:
“Is there any guideline for the efficient backbone design?”,
“How to split the latent code into different feature levels?”,
and “Can we use cheaper regression heads?”.

Shallower Backbone. To answer the first question, we propose
a simple “semantic level alignment” principle, i.e., the maxi-
mum semantic level of the backbone network should match that
of the target GAN model. pSp [10] downsamples the resolution
of the feature to 1/16 of the input, and IDGI [11] downsamples
the feature to 1/64 of the input image. However, does the
network really need to be such deep? In fact, there exists a
semantic level best matching point. If the backbone network
is too shallow, its encoded feature will not be able to predict
the high-level latent codes well. On the other hand, too deep
backbone network will not only introduce much overhead but
also possibly bring even worse inversion results.

To find the best match point, we follow the recognition
network design convention [47], [48] and roughly regard the
features of the same downsampled resolution as the same
semantic level. Guided by this principle, we conduct a simple
ablation on the backbone of pSp by using a single FC head
like IDGI, and find the features corresponding to 1/8 of the
input resolution are sufficient to match the maximum semantic
level of StyleGAN’s latent codes and can even get better
inversion results than the 1/16 version. This demonstrates that
a deeper backbone network does not mean better inversion
results. In contrast, the shallower encoder can not only bring

the performance improvement but also reduce the model
complexity. Moreover, we empirically find the feature pyramid
does not help, and we guess it is because the features of
deeper layers in the feature pyramid structure of pSp are
derived from the features of early layers, and therefore the
additional introduction of deeper-layer features in predicting
low-dimensional latent codes does not bring extra information
gain. Detailed results will be given in the ablation part.

Hierarchical Structure. Given the above backbone net-
work, we get three different semantic levels of features (i.e.,
1/8, 1/4, 1/2). Inspired by pSp, we then split the features from
different semantic levels to predict different parts of the latent
codes. Considering the feature dimension of higher semantic
levels are also higher, assigning more latent codes to higher
semantic-level features will have a large model. To reduce the
model size while maintaining a good inversion performance,
we consider the above assignment problem as a constrained
optimization problem. Denote the latent code number assigned
to each semantic level to be n1, n2, n3, it can be formally
formulated as:

n∗1, n
∗
2, n

∗
3 =argmax

n1,n2,n3

Q(n1, n2, n3) + λP(n1, n2, n3),

s.t., n1 + n2 + n3 = 18,
(1)

where Q,P denotes the inversion quality and model size
function with respect to n1, n2, n3. Since it is hard to have an
explicit function of Q due to its dependency on the training
process, we simply adopt a simple binary search algorithm
to find the rough optimal values. Specifically, we first regard
n2, n3 as a whole and find the smallest n1 with acceptable
performance reduction (SSIM decreases by no more than 2%
of the original), then we continue to find the smallest value for
n2 in a similar way. After the above search process, we finally
adopted a three-layer hierarchical structure to predict the front,
middle and tail layers latent code, with the corresponding
number of layers n1, n2, n3 being 9, 5, and 4 respectively.
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Efficient Prediction Head. As mentioned above, there are 18
complex ConvHeads in pSp, each of which compresses the
input feature into 1×1 resolution by a series of convolutional
layers with stride of 2, and predict the single-layer latent code.
We find such a complex ConvHead is not only unnecessary
but also introduces heavy overhead. To keep the regression
head lightweight while keeping important information for
regression, we design a very simple and efficient head, which
just consists of an average pooling layer and a fully connected
layer. For the deep (1/8), medium(1/4), and shallow (1/2)
features from the hierarchical structure, they will have such
a simple head respectively. Besides, to balance performance
and overhead, the average pooling layer in the three heads
downsamples the input features to the resolution of 7 × 7,
5 × 5, and 3 × 3 respectively, which effectively aggregates
the information to predict the latent code while reducing the
number of model parameters.

B. Loss Functions
In order to train a better GAN inversion network, besides

the commonly used losses, we improve the existing GAN
inversion loss by introducing two new losses, i.e., multi-layer
identity loss and multi-layer face parsing loss.

Common Losses. The common losses consist of two types of
constraints from the pixel level and the feature level, respec-
tively. First, we use `2 loss to provide pixel-level supervision:

L2 = ||x−G(E(x))||2, (2)

where x represents the input image, E(·) represents the
GAN inversion network, G(·) represents the StyleGAN, and
G(E(x)) represents the reconstructed image of the input
image. However, only using the `2 loss will result in blurring
reconstruction results, so we choose to use LPIPS [49] as our
feature-level loss, which is demonstrated [7] to yield clearer
reconstruction results compared to the perceptual loss [50].

LLPIPS = ||F (x)− F (G(E(x)))||2, (3)

where F (·) represents the AlexNet [51] feature extractor.

Multi-Layer Identity Loss. As the key face image attribute,
keeping the original identity information is extremely im-
portant for GAN inversion. Especially for human perception,
whether the identity consistency between the inverted image
and the original image can be effectively retained is a decisive
factor for users to evaluate the quality of face inversion.
Therefore, we leverage the multi-layer features from one pre-
trained face recognition network (ArcFace [52]) to impose
semantic constraints on identity information. According to the
resolution size, we choose 5 different levels of features as
supervision to better supervise the semantic alignment of the
identity information between the reconstructed image and the
input image:

Lm id =

5∑
i=1

(1− cos(Ri(x), Ri(G(E(x))))), (4)

where cos means the cosine similarity and Ri(x) denotes the
feature corresponding to the i-th semantic level from the face
recognition network R of the input image x.

Multi-Layer Face Parsing Loss. Because features from
the face recognition network often focus on capturing the
global identity characteristics, relying on multi-layer identity
loss alone cannot achieve accurate reconstructions of local
details (e.g., glasses). To provide better local supervision, we
introduce multiple layers of features from one pre-trained
facial parsing network P [53] to provide a more localized
knowledge:

Lm par =

5∑
i=1

(1− cos(Pi(x), Pi(G(E(x))))), (5)

Similar to the well-known perceptual loss, even though the
multi-layer identity loss and face parsing loss rely on extra
pre-trained networks, we think it is valuable to introduce them
into the GAN inversion to push the inversion quality to a new
limit. More importantly, as they only appear in the training
stage but not inference stage, they are indeed the free lunch
for downstream applications. The generalization ability of the
proposed loss to non-face domains will be verified in the
experiment section.
To summarize, the overall loss function is defined as:

L = λ1L2 + λ2LLPIPS + λ3Lm id + λ4Lm par, (6)

where λ1, λ2, λ3, λ4 are set to 1, 0.8, 0.5, 1 respectively by
default.

C. Multi-Stage Refinement

As shown in [11], GAN inversion is a challenging problem
and often difficult to achieve satisfactory inversion results with
a single pass. Therefore, they first use a feed-forward network
to get an initial inversion result, then refine it by using the
optimization-based method as a post-processing step. Despite
better inversion results, such optimization-based refinement is
very time-consuming. But it motivates us to introduce feed-
forward-based recursive refinement. In this paper, thanks to
our better inversion network design, we proposed the multi-
stage refinement by purely using the feed-forward inversion
networks, thus making the whole process still run in a feed-
forward way. The overall framework diagram is shown in
Figure 2 (c) and the whole process is formalized as follows:

Wt =

{
Et(x) t = 1

Et(x, G(Wt−1)) +Wt−1 t > 1
(7)

where Et represents the network of stage t and Wt =
[wt

1, ..., w
t
18] is the inverted latent code. All the refinement

stages (t > 1) adopt the same GAN inversion network
structure as E1 but take the concatenation of the original input
image and the previous stage inverted image as input. Besides,
the learning objective of the refinement stages is changed to
predicting the residuals, so as to find a better latent code
around the previous stage prediction result.

To sum up, E2Style shares a similar spirit to IDGI’s
prediction-then-optimization approach. However, E2Style pol-
ishes the initial latent code by adding the multi-stage refine-
ment, which requires only one forward pass to output the
final result and does not bring a significant increase in time
consumption while improving the inversion performance.
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IV. EXPERIMENTS

In this section, we first compare E2Style quantitatively and
qualitatively with the existing state-of-the-art approaches on
the face domain. And the corresponding detailed ablation
analysis is then provided to justify the effect of different
improvement aspects. Finally, we demonstrate the generality
of E2Style on non-face domains.

A. Comparisons on the Face Domain

Implementation Details. For the backbone structure, we fol-
low the SE-ResNet50 [54] backbone but only keep the stages
before the 1/16 downsample stage. And we use StyleGAN2
pre-trained on the FFHQ dataset [1] as the target GAN model
to inverse. In order to improve the generalization ability of the
inversion network, the horizontal flip is used during training.
Regarding the training strategy, we first train the first-stage
network alone. After its convergence, we freeze it and then
train the refinement stage network in a similar way. For all
the network training, the base learning rate is set to 0.0001.
By default, all network is trained for 25 epochs. Following pSp
[10], the Ranger optimizer is used, which is a combination of
Rectified Adam [55] with the Lookahead technique [56].

Datasets and Metrics. To evaluate the cross-dataset inver-
sion and editing performance of existing methods, both the
baselines and E2Style use the FFHQ dataset [1] with 70, 000
faces as the training set, while the qualitative and quantitative
comparisons are performed on the CelebA-HQ dataset [38].
For inversion, since the optimization-based method I2S [4]
is too time-consuming, we randomly selected 2, 000 images
from the CelebA-HQ dataset and resized them to the resolution
of 256 × 256 for the evaluation of all methods. For editing,
the entire CelebA-HQ dataset is used for quantitative and
qualitative comparisons. For the quantitative evaluation of the
inversion, five metrics are adopted: Peak Signal-to-Noise Ratio
(PSNR) [57], Structural SIMilarity (SSIM) [58], IDentity
Similarity (IDS), runtime (using a single NVIDIA GEFORCE
RTX 3090 GPU), and model size. For quantitative evaluation
of editing quality, we use FID [59] and IDentity Similarity
(IDS) as metrics and conduct a user study. For SSIM, PSNR,
and IDS, higher indicates better. The method we used here to
calculate the identity similarity is Curricularface [60], instead
of ArcFace [52] which we used for training.
Inversion Quality. We compare E2Style with the current state-
of-the-art GAN inversion approaches, including forward-based
methods: pSp [10], IDGI-Encoder [11], ReStyle [45], e4e [61],
optimization-based method: I2S [4], and hybrid method: IDGI
[11], DNI [8]. For ReStyle, the iterative refinement mechanism
is executed 5 times as they recommend. For IDGI, we followed
the procedure in their paper: the output of the network was
used as the initialization point and the optimization is iterated
100 times. I2S used the mean latent code as initialization and
then iterated 1, 000 times for each input image. For DNI, the
latent code is initialized by the domain-guided encoder, and
then the noise optimization process is iterated 100 times.

As shown in Table I, our single-stage inversion network
already outperforms all existing single-stage forward-based

TABLE I
QUANTITATIVE COMPARISON OF INVERSION QUALITY ON THE

CELEBA-HQ DATASET, IDS MEANS IDENTITY SIMILARITY, ∗ MEANS
WITHOUT RESIDUAL LEARNING, C MEANS REPLACING THE AVERAGE
POOLING LAYER WITH CONTINUOUS CONVOLUTIONAL LAYERS. OUR

E2STYLE ACHIEVES COMPARABLE RESULTS TO OPTIMIZATION-BASED
METHODS AND BETTER RESULTS THAN FEED-FORWARD-BASED METHODS

WHILE MAINTAINING HIGH EFFICIENCY.

Methods SSIM PSNR IDS RunTime(s) Param(M)
pSp 0.58 20.7 0.57 0.09 262
IDGI-Encoder 0.51 18.9 0.19 0.02 165
ReStyle 0.62 21.6 0.67 0.36 201
e4e 0.55 19.5 0.51 0.09 262
E2Style-1Stage 0.63 21.3 0.69 0.04 85
E2Style-1Stage-C 0.62 21.2 0.68 0.04 87
E2Style-2Stage 0.66 22.5 0.74 0.09 170
E2Style-3Stage 0.67 23.0 0.75 0.13 255
E2Style-2Stage∗ 0.63 21.3 0.69 0.09 170
IDGI 0.62 22.3 0.37 6.60 165
DNI 0.65 21.0 0.55 13.1 525
I2S 0.67 23.9 0.60 54.4 -

TABLE II
QUANTITATIVE COMPARISON OF EDITING QUALITY ON THE CELEBA-HQ
DATASET, IDS MEANS IDENTITY SIMILARITY. OUR E2STYLE ACHIEVES
THE BEST IDENTITY CONSISTENCY AND HIGHEST PREFERENCE RATES.

Methods FID IDS Preference Rate
pSp 54.4 0.33 12.0%
ReStyle 48.8 0.40 14.8%
e4e 55.5 0.31 18.8%
E2Style 49.4 0.49 54.5%

methods with the smaller model size. With multi-stage re-
finement, our 2-stage network outperforms the multi-stage
forward-based method ReStyle, the hybrid method IDGI, DNI.
Our 3-stage network has comparable performance with the
optimization-based method I2S in terms of SSIM metric.
Moreover, our identity consistency and speed both have obvi-
ous advantages over I2S. We further provide some qualitative
comparison examples in Figure 4, whose quality rank is
consistent with the quantitative results.
Editing Quality. We now compare the editing quality of
E2Style with baselines. InterFaceGAN [3] is used to obtain
editing directions, and then these are used to edit latent codes
obtained by different inversion methods. As shown in Figure
5, compared to pSp [10], e4e [61], Restyle [45], our results are
more desirable. For example, when editing the expression, our
method better preserves the identity consistency of the image.
In terms of age manipulation, our method manipulates other
facial semantics less while changing the age of the target face.

In Table II, we provide quantitative comparisons. FID and
IDentity Similarity are calculated between input images and
edited images. E2Style achieves the best identity consistency
while completing the editing. To perceptually measure the
performance of different methods for editing, we ask 200 vol-
unteers to conduct a user study with 20 randomly picked result
groups, and ask them to select the one which completes the
specified editing while retaining the other irrelevant attributes
to a large extent. The preference rates are shown in Table II
and demonstrate the superiority of our method.
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pSp [10] e4e [61] ReStyle [45] DNI [8] I2S [4] E2Style-1Stage E2Style-2Stage Input Image

Fig. 4. Visual comparison of the GAN inversion quality on the CelebA-HQ dataset. Our E2Style performs better than existing forward-based methods and
comparably to state-of-the-art optimization-based methods while maintaining high efficiency as well as forward-based methods.
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Fig. 5. Qualitative comparison of our E2Style with pSp [10], e4e [61], and Restyle [45] on editing. As can be seen, our approach shows the best identity
consistency while completing the editing.

B. Ablation Study

Effectiveness of Network Structure Design. In the top part
of Table III, we first validate the effectiveness of the proposed
network structure design. (a), (b), and (c) indicate that we used
the single efficient prediction head to directly predict the latent
code after downsampling the input image to 1/4, 1/16, and
1/8 of the original resolution, respectively. For all these three
settings we used common (`2, LPIPS) and the single-layer
identity loss function to train the network. It clearly shows that
deeper networks are not better, and the larger network capacity
does not lead to a performance gain. For the inversion task,
there is a point where the semantic level of StyleGAN’s latent
code is best matched, which may explain the unsatisfactory
performance of the IDGI encoder.

It is intuitive to design the inversion network to have the
same stage number as StyleGAN and strictly match their
semantic levels based on the feature resolution, but our ex-
perimental results above show deeper inversion networks even
have worse performance. It also indicates that fully relying on
the feature resolution for semantic alignment is not a good
choice. Moreover, that deep inversion network will be super
large and infeasible for real-time applications. Considering
these points, we design a relatively shallow inversion network
and adopt a three-layer hierarchical structure to predict the
latent code as (d). For (e), we took the same scheme as pSp
[10], i.e., we used 18 Convheads to predict the latent code
of each layer. Compared with (d), (e) brings a larger number
of parameters but worse performance. We guess this may be
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TABLE III
QUANTITATIVE ABLATION STUDY. SIZE REPRESENTS THE MAXIMUM
FACTOR TO DOWNSAMPLE THE INPUT IMAGE. FOR THE PREDICTION

HEAD, 1E, 3E, AND 18C REPRESENT THE SINGLE EFFICIENT HEAD, THE
THREE-LEVEL EFFICIENT HEADS, AND 18 INDEPENDENT CONVHEADS,

RESPECTIVELY. REGARDING TRAINING LOSS, C, SI, MI, AND MP STAND
FOR COMMON, SINGLE-LAYER IDENTITY, MULTI-LAYER IDENTITY, AND

MULTI-LAYER PARSING LOSS, RESPECTIVELY.

Size Head Loss SSIM PSNR IDS Param(M)
(a) ↓ 4 1E C+SI 0.57 20.3 0.62 59
(b) ↓ 16 1E C+SI 0.57 20.5 0.66 262
(c) ↓ 8 1E C+SI 0.59 20.9 0.67 133
(d) ↓ 8 3E C+SI 0.59 21.0 0.67 85
(e) ↓ 8 18C C+SI 0.55 20.0 0.61 233
(f) ↓ 8 3E C 0.59 21.0 0.27 85
(g) ↓ 8 3E C+MI 0.60 20.9 0.69 85
(h) ↓ 8 3E C+MI+MP 0.63 21.3 0.69 85

Input Image w/o ID w/ Single-ID w/ Multi-ID

Fig. 6. The effect of multi-layer identity loss. With the multi-layer identity
loss, the identity consistency between the reconstructed image and the input
image is significantly improved.

because continuous downsampling to the feature resolution of
1× 1 will lead to excessive information missing, while using
average pooling can effectively aggregate useful information
with a shorter path.

Input Image w/o Multi-Parsing w/ Multi-Parsing

Fig. 7. The effect of multi-layer face parsing loss. With the multi-layer face
parsing loss, the network is able to pay attention to the local face regions, thus
more accurately reconstructing the local details, e.g., the glasses and tongue
of the two cases.

Next, we give the quantitative ablation study about feature
pyramid network (FPN). Compared with baseline (d), we add

the same feature pyramid structure as pSp [10] to (d), however,
quantitative results (exactly the same SSIM, PSNR, and IDS)
prove that this structure does not lead to performance gains.
But model parameters are increased from 85M to 98M and the
running time is increased from 0.04 seconds to 0.05 seconds.
We guess it is because the features of deeper layers in the
feature pyramid structure of pSp are derived from the fea-
tures of early layers, and therefore the additional introduction
of deeper-layer features in predicting low-dimensional latent
codes does not bring extra information gain.

Finally, we provide an experiment E2Style-1Stage-C which
replaces the average pooling layer in E2Style-1Stage with
continuous convolutional layers to downsample the features
to the same size as E2Style-1Stage. The quantitative results in
Table I show that more parameters do not result in performance
improvement. Therefore, we choose the more efficient and
parameter-free average pooling to downsample the features.

Importance of Multi-Layer Identity and Parsing Losses.
The bottom part of Table III shows our quantitative results for
removing identity loss, introducing multi-layer identity loss,
and introducing both multi-layer identity loss and multi-layer
face parsing loss on top of (d), respectively. It well demon-
strates the effectiveness of multi-layer identity and face parsing
loss. We further provide some qualitative visual comparisons
in Figure 6 and Figure 7. With the multi-layer identity loss,
the identity consistency between the reconstructed image and
the input image is significantly improved. With the multi-layer
face parsing loss, the network is able to pay attention to the
local face regions, thus more accurately reconstructing the
local details, e.g., the glasses and tongue of the two cases.

Significance of the Refinement Stage. As shown in Table
I, our 2-stage inversion network significantly improves all the
metrics compared to the 1-stage counterpart, but the gain starts
to saturate by adding more stages. Considering both speed and
performance. we adopt the two-stage inversion network as the
default setting. In the last row of Table I, we further change
the second stage learning objective to directly predict the latent
code instead of the residuals of the first stage latent code. The
experimental results show that learning the residuals in the
refinement stages is extremely important. In contrast, if we
continue to learn the absolution latent code, the refinement
stage is still difficult to bring better performance, which may
be because the latent code residuals (smaller value range) have
smaller variance than the absolute latent codes, thus making
the inversion network easier to regress.

C. Comparisons on Non-Face Domains

We will verify the versatility of the proposed improvements
on the network design and loss function to non-face domains.

Effectiveness of Our Encoder. For the non-face domains,
we use the Stanford Cars [62], LSUN [63] Cat, and LSUN
[63] Horse datasets to evaluate the performance of the dif-
ferent methods, with the number of training sets being 8144,
10000, and 10000, respectively, and the number of test sets
all being 2, 000. To compare the performance of different
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TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT ENCODER STRUCTURES ON THE NON-FACE DOMAINS. NOTE THAT PSP, IDGI AND E2STYLE-1STAGE ALL

USE THE SAME TRAINING LOSSES AND STRATEGIES, THE ONLY DIFFERENCE BETWEEN THEM IS THE NETWORK STRUCTURE. IT IS CLEAR THAT OUR
NETWORK STRUCTURE ACHIEVES THE BEST PERFORMANCE WITH THE LOWEST NUMBER OF NETWORK PARAMETERS.

Cats Horses Cars
Methods SSIM PSNR Time(s) Param(M) SSIM PSNR Time(s) Param(M) SSIM PSNR Time(s) Param(M)
pSp 0.39 18.1 0.06 206 0.33 17.1 0.06 206 0.40 16.2 0.06 234
IDGI 0.40 18.4 0.02 165 0.34 17.7 0.02 165 0.41 16.7 0.03 201
E2Style-1Stage 0.41 18.5 0.02 85 0.37 17.8 0.02 85 0.43 16.8 0.03 95

pSp [10] IDGI [11] E2Style-1Stage Input Image pSp [10] IDGI [11] E2Style-1Stage Input Image

Fig. 8. Visual comparison of the GAN inversion quality on the non-face domains. Thanks to our improvements in network structure, our encoder generates
higher quality reconstruction results with the lowest network parameters compared to pSp, IDGI.

Input Image w/o Multi-Seg w/ Multi-Seg

Fig. 9. The effect of multi-layer segmentation loss. It enables the network
to pay more attention to salient objects that are of more interest to humans,
resulting in a large improvement in perceptual quality.

encoder network structures, we retrain pSp [10], IDGI [11],
and our encoder on these datasets. These methods all use
common (`2, LPIPS) losses as training constraints and the
training strategies for these methods are completely identical,

which are consistent with the strategy we use for the face
domain. Note that for each non-face domain we use the official
StyleGAN2 as the generator, which is trained by images from
that domain.

Quantitative and qualitative comparisons are shown in Table
IV and Figure 8. Obviously, doing inversion tasks on these
non-face domains is more challenging due to the more com-
plex and diverse datasets. However, this does not hinder us
from comparing the performance of different network structure
designs. Thanks to our improvements in network structure,
our encoder has the best performance and the lowest network
parameters of all forward-based methods.

Extensibility of Multi-Layer Face Parsing Loss. The essence
of the multi-layer face parsing loss is showing that local
supervision is useful for GAN inversion. By replacing the
multi-layer face parsing loss into multi-layer segmentation
loss with a pretrained segmentation model [66], we find
the perceptual quality of inversion results on these non-face
datasets can also be significantly improved, although there
is a slight decrease in PSNR, SSIM. As shown in Figure 9,
the introduction of multi-layer segmentation loss enables the
network to pay more attention to salient objects that are of
more interest to humans, resulting in a large improvement in
perceptual quality.

V. APPLICATIONS

GAN inversion provides the community with new ideas
and perspectives for solving image editing problems. With our
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Fig. 10. The illustration of our proposed secure deep hiding. By combining the proposed GAN inversion method with traditional steganography, we can
easily implement the application of securely hiding an image with 1024× 1024 resolution to another image.
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Fig. 11. Qualitative comparison of deep hiding. Stego is obtained by hiding
Secret into the Carrier. Please zoom in to get a better view of the residuals
between the stego image S and the original carrier image C.

fast and accurate GAN inversion technique as the foundation,
many downstream image processing tasks will be benefited
greatly. In this section, we show some interesting and practical
applications to demonstrate the potentials of our E2Style,
including: secure deep hiding, image manipulation, image
restoration, and image translation. Except image translation
tasks, all applications use FFHQ [1] as the training dataset
and use CelebA-HQ [38] as the test dataset.

A. Secure Deep Hiding

Algorithm 1: Secure Deep Hiding
Input: secret image Is; carrier image Ic; a pretrained

StyleGAN2 generator G(·); our encoder E(·);
traditional steganography embedding and
extraction algorithms Emb(·, ·), Ext(·).

Output: reconstructed secret image Ir.
1 Ws = E(Is);
2 Was = bWsc;
3 Ics = Emb(Ic,Was);
4 The sender sends Ics, then the recipient receives Ics;
5 Was = Ext(Ics);
6 Ir = G(Was).

In this application, the goal is to hide one secret image
into one carrier image in an imperceptible way. In contrast
to traditional steganography [67], [68], [69], which embeds
secret messages with small capacity, deep hiding aims at large
capacity hidden messages, such as hiding a secret image with

1024 × 1024 resolution into a carrier image. Existing deep
hiding schemes [65], [64], [70] either directly concatenate
two images together and feed them into the network, or feed
only the secret image into the network for the carrier-agnostic
purpose, which have weak imperceptibility and undetectability,
therefore the security cannot be guaranteed. Empowered by
our excellent inversion quality, we can combine the pro-
posed method with traditional steganography to propose a
novel application: secure deep hiding, which overcomes the
aforementioned drawbacks. Our proposed secure deep hiding
framework is shown in Figure 10. Alg. 1 shows the details of
the algorithm. Specifically, the whole hiding process is divided
into four steps:

1) The sender selects the secret image to be sent and then
uses the proposed GAN inversion method to get its latent
code Ws ∈ R18×512. In order to reduce the amount of
secret message data while not causing a significant visual
impact on the reconstruction result, the sender keeps the
integer part of Ws to obtain Was ∈ Z18×512.

2) The sender selects a carrier image, hides Was in the
carrier image using the traditional steganography method
[71] to get the stego image Ics, and then sends the stego
image out.

3) After receiving the stego image, the recipient obtains Was

accurately using the corresponding extraction algorithm
[71].

4) The recipient feeds Was to the StyleGAN which has the
same network weight as the one inverted by the sender
to reconstruct the secret image.

In this process, the pre-trained StyleGAN indeed acts as the
encryption and decryption codebook.

Figure 11 shows the visual comparison of our method with
universal deep hiding (UDH) [64] and dependent deep hiding
(DDH) [65]. With the benefit of the proposed high-quality
GAN inversion method, our deep hiding scheme achieves
comparable reconstruction quality with UDH and DDH. But
as shown in the third column of Figure 11, UDH and DDH
either expose the secret image or the carrier image, while our
scheme has better imperceptibility and undetectability. More
importantly, the traditional steganography we use provides
theoretical security, whereas UDH and DDH do not have
it because they are both based on deep learning networks.
To summarize, by combining the proposed GAN inversion
method with traditional steganography, we can easily im-
plement the application of securely hiding an image with
1024 × 1024 resolution to another image, which is referred
to as Secure Deep Hiding.
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Source Target FSwap FShifter Pasted Ours

Fig. 12. Comparison of our approach with FSwap [72] and FShifter [73] on
semantic face swapping.

B. Image Manipulation

Algorithm 2: Semantic Face Swapping
Input: source image Is; target image It; a pretrained

StyleGAN2 generator G(·); our encoder E(·).
Output: identity-swapped face image Iis.

1 Crop out the center area of Is and paste it onto It to
get the pasted image Ip;

2 Iis = G(E(Ip)).

Semantic Face Swapping. Semantic face swapping is in-
tended to replace the identity of the target image with that
of the source image, however, it does not guarantee strict
alignment of facial attributes such as expression, lighting, head
pose, etc. With the pretrained StyleGAN2 as a strong face
reconstruction prior, we find our method can also be used to
create more natural face swapping results easily. Alg. 2 shows
the details of the algorithm. Specifically, we crop out the cen-
tral area of the source face image and paste it directly into the
same position of the target face image to create a pasted image.
To eliminate the obvious artifacts present in the pasted image,
we use the proposed GAN inversion technique to reconstruct
the pasted image. As shown in Figure 12, the reconstructed
image perfectly blends the pasted face with its surrounding
area. Compared to traditional geometric transformation based
FaceSwap [72] and learning-based FaceShifter [73], our results
have higher identity consistency with the source image and
better image quality.

Algorithm 3: Style Mixing
Input: style image Is; content image Ic; a pretrained

StyleGAN2 generator G(·); our encoder E(·);
style mixing operation Mix(·, ·).

Output: style mixing result image Im.
1 Im = G(Mix(E(Is), E(Ic))).

Style Mixing. Style mixing aims to transfer the low-level
appearance characteristics from the style image to the content
image. Alg. 3 shows the details of the algorithm. In detail,
after obtaining the respective latent codes of the style image
and the content image, we replace the last 11 layers of the

Style

Content

Fig. 13. Style mixing results. All the content images are coated with the
same color lipstick as the style image.

latent codes corresponding to the content image with those of
the style image. A specific example is shown in Figure 13,
where all the content images are coated with the same color
lipstick as the style image.

Algorithm 4: Face Interpolation
Input: real image IA; real image IB ; a pretrained

StyleGAN2 generator G(·); our encoder E(·);
blending parameter λ.

Output: face interpolation result image Ii.
1 for λ = 0 to 1 do
2 Ii = G(λE(IB) + (1− λ)E(IA));
3 end

Face Interpolation. Given two real-world images A and
B, Face interpolation is intended to complete the gradual
morphing from input A to input B. Alg. 4 shows the details of
the algorithm. we use the proposed GAN inversion method to
obtain their respective latent codes WA,WB ∈ W+. Then, we
combine the two latent codes by linear weighting to generate
the intermediate latent code WI = λWB+(1−λ)WA. Finally,
the image corresponding to the intermediate latent code is
generated. By gradually increasing the blending parameter λ
from 0 to 1, we can achieve the gradual morphing effect from
input A to input B, as shown in Figure 14.

C. Image Restoration

Algorithm 5: Image Restoration
Input: impaired image Ii; a pretrained StyleGAN2

generator G(·); our encoder for the specified
restoration task Er(·).

Output: restored image Ir.
1 Ir = G(Er(Ii)).

By introducing corresponding data augmentations to the
input images during the training phase, our E2Style can be
easily extended to perform a number of image restoration
tasks, such as colorization, inpainting, super resolution. Alg. 5
shows the details of the algorithm in the inference phase. Here
we qualitatively compare our E2Style with pSp [10], e4e [61],
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Input A 0 1 Input B

Fig. 14. Face interpolation results. By gradually increasing the blending parameter λ from 0 to 1, we achieve the morphing effect from input A to B.

and Restyle [45] on these tasks, both of which use the same
data augmentations. Figure 15 shows the visual comparison of
our E2Style with other methods on these three tasks.

Colorization. Image colorization aims to convert the single-
channel gray-scale image into a semantically reasonable three-
channel color image. For the colorization task, we use the color
image as the target and the corresponding grayscale image as
input when training the network, so the goal of the encoder is
no longer to reconstruct the input image accurately but to find
the most appropriate latent code which can colorize the input
grayscale image reasonably. Compared with other methods,
E2Style accomplishes reasonable coloring for the grayscale
image while ensuring consistency in identity and local details
(e.g., glasses).

Inpainting. Given an incomplete image, the task of inpainting
is to recover the missing pixels so that the recovered part
is compatible with the known pixels. To perform inpainting
using the GAN inversion framework, we employ a degraded
transformation to the input image, in which a region is
randomly selected and the pixel value of that region is set
to 0 during the training process. As illustrated in Figure 15,
E2Style achieves reasonable filling of unknown regions while
keeping existing pixel values unchanged as much as possible.

Super Resolution. The goal of super resolution is to re-
construct the corresponding high-resolution image from the
observed low-resolution image. Following the data augmen-
tation method of pSp, we randomly downsample the input
image by ×1, ×2, ×4, ×8, and ×16 and use the original
resolution image as the target during training. Compared to
other methods (Figure 15), our results are more realistic and
with better facial details, e.g., the eyes in the shown example
are more faithfully aligned with the low-resolution image, and
the glasses of another example are faithfully reconstructed.

D. Image Translation

By replacing the input with the corresponding sketch or
segmentation label map of the image during the network

Algorithm 6: Image Translation
Input: sketch or segmentation map Is; a pretrained

StyleGAN2 generator G(·); our encoder for the
specified image translation task Et(·).

Output: translated image It.
1 It = G(Et(Is)).

training phase, our framework can also perform image trans-
lation tasks. Given that there is no relevant dataset for the
FFHQ, we perform this task on the CelebA-HQ, of which
3, 000 images are reserved for testing purposes. Specifically,
we follow [10] to generate the sketch dataset of CelebA-HQ,
while the segmentation label maps are from the CelebAMask-
HQ dataset [74]. Regarding the training loss, it is the same
as the GAN inversion task except that the multi-layer identity
loss is removed. Alg. 6 shows the details of the algorithm in
the inference phase. The visual comparison results are shown
in Figure 15. Compared to other methods, it is clear that our
results are more faithfully aligned to the respective semantics
of the input, e.g. the glasses in the sketch-to-image example.

VI. CONCLUSION

In this paper, we propose E2Style, which improves GAN
inversion in terms of efficiency and effectiveness. Such im-
provements come from three aspects: 1) designing a more
efficient GAN inversion network with a shallow backbone,
hierarchical latent code regression, and efficient prediction
heads; 2) introducing multi-layer identity loss and multi-layer
parsing loss; and 3) purely feed-forward-based multi-stage
refinement. Extensive evaluation and applications demonstrate
that our E2Style performs much better than existing feed-
forward-based methods and comparably to state-of-the-art
optimization-based methods with higher efficiency. In the
future, more emphasis should be put on creating a universal
approach to encode all kinds of images into the latent space of
a StyleGAN model pre-trained in the corresponding domain.
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Fig. 15. Comparison of our E2Style with pSp [10], e4e [61], and Restyle [45] on image restoration including colorization, inpainting, super resolution and
image translation tasks.
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